Generalized matrix functions
نویسندگان
چکیده
منابع مشابه
Generalized matrix functions, determinant and permanent
In this paper, using permutation matrices or symmetric matrices, necessary and sufficient conditions are given for a generalized matrix function to be the determinant or the permanent. We prove that a generalized matrix function is the determinant or the permanent if and only if it preserves the product of symmetric permutation matrices. Also we show that a generalized matrix function is the de...
متن کاملComputation of Generalized Matrix Functions
We develop numerical algorithms for the efficient evaluation of quantities associated with generalized matrix functions [J. B. Hawkins and A. Ben-Israel, Linear and Multilinear Algebra, 1(2), 1973, pp. 163–171]. Our algorithms are based on Gaussian quadrature and Golub–Kahan bidiagonalization. Block variants are also investigated. Numerical experiments are performed to illustrate the effectiven...
متن کاملLommel Matrix Functions
The main objective of this work is to develop a pair of Lommel matrix functions suggested by the hypergeometric matrix functions and some of their properties are studied. Some properties of the hypergeometric and Bessel matrix functions are obtained.
متن کاملEla Matrix Functions Preserving Sets of Generalized Nonnegative Matrices
Matrix functions preserving several sets of generalized nonnegative matrices are characterized. These sets include PFn, the set of n×n real eventually positive matrices; and WPFn, the set of matrices A ∈ R such that A and its transpose have the Perron-Frobenius property. Necessary conditions and sufficient conditions for a matrix function to preserve the set of n× n real eventually nonnegative ...
متن کاملStable Computation of Generalized Matrix Functions via Polynomial Interpolation∗
Generalized matrix functions (GMFs) extend the concept of a matrix function to rectangular matrices via the singular value decomposition. Several applications involving directed graphs, Hamiltonian dynamical systems, and optimization problems with low-rank constraints require the action of a GMF of a large, sparse matrix on a vector. We present a new method for applying GMFs to vectors based on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1965
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1965-0194445-9